Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.

نویسندگان

  • Laure Wawrezinieck
  • Hervé Rigneault
  • Didier Marguet
  • Pierre-François Lenne
چکیده

To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin1A receptor: A zFCS study.

Single-point fluorescence correlation spectroscopy (FCS) of membrane-bound molecules suffers from a number of limitations leading to inaccurate estimation of diffusion parameters. To overcome such problems and with the overall goal of addressing membrane heterogeneities, we performed z-scan FCS (zFCS) of the serotonin(1A) receptor. We analyzed the results according to FCS diffusion laws that pr...

متن کامل

Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy.

The plasma membrane of various mammalian cell types is heterogeneous in structure and may contain microdomains, which can impose constraints on the lateral diffusion of its constituents. Fluorescence correlation spectroscopy (FCS) can be used to investigate the dynamic properties of the plasma membrane of living cells. Very recently, Wawrezinieck et al. (Wawrezinieck, L., H. Rigneault, D. Margu...

متن کامل

Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization.

We describe the development of a new methodology to probe the plasma membrane organization of living cells at the nanometric scale. Single nanometric apertures in a metallic film limit the observed membrane area below the optical diffraction barrier. The new approach performs fluorescence correlation spectroscopy with increasing aperture sizes and extracts information on the diffusion process f...

متن کامل

Lateral membrane diffusion modulated by a minimal actin cortex.

Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diff...

متن کامل

Accounting for misalignments and thermal fluctuations in fluorescence correlation spectroscopy experiments on membranes.

Several authors have exploited the ability of the fluorescence correlation spectroscopy to probe motion at the molecular level. In a couple of decades, all their efforts have allowed the application of this technique even to the diffusion measurement of cellular components. Nowadays, the fluorescence correlation spectroscopy is considered a standard tool to measure diffusion in cells both in vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 89 6  شماره 

صفحات  -

تاریخ انتشار 2005